
Specification to the KLIPPEL ANALYZER SYSTEM (Document Revision 1.4)

FEATURES

- Simulate transducer behaviour using arbitrary stimuli
- Simulate long time thermal behaviour
- Auralization and analysis of arbitrary nonlinear effects
- Calculates history of electrical, mechanical, acoustical and thermal state variables over time

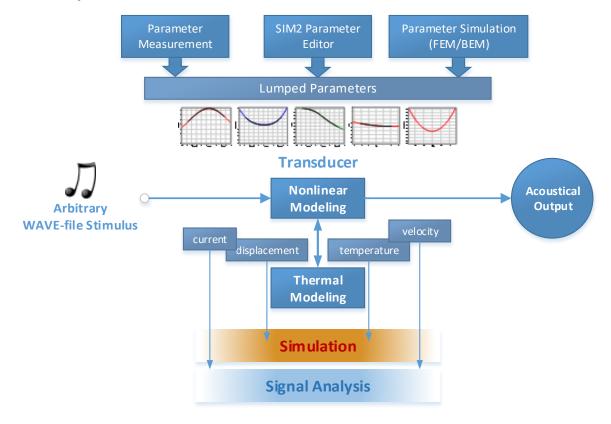
BENEFITS

- Assess long time performance of the transducer in target applications
- Exploit the main source of nonlinear distortion in the output signal
- Evaluate the audible performance of the speaker at the target application
- Save time and costs in prototyping

DESCRIPTION

The SIM-AUR module performs a numerical simulation of electro-dynamical drivers mounted in common enclosure systems. Unlike other modules, the applied stimulus can be any kind of signal (e.g. test signals, music, ...) and arbitrary in length.

The SIM-AUR module uses an extended lumped-parameter model to describe the transfer behaviour in the full working range. The electrical, mechanical, acoustical and thermal state variables are calculated and available for extended analysis. Both real or fictitious driver and system data may be used as basis for the simulation.


In addition, distinct nonlinear effects can be separated without affecting the simulated transducer system. This separation of the distortion in the acoustical output signal from the linear component is the basis for a new auralization technique where double blind A/B comparisons may be performed and the threshold of audibility is determined systematically. In addition, the separated signals are available for further analysis.

SSIM-AUR Simulation-Auralization

CONTENT

1	Principle	3
2	Operation Principle	4
3	Large signal modeling	6
4	Time-lapse Technique	8
5	Auralization	10
6	Simulation and Auralization Technique	11
7	Components of the SIM-AUR	12
8	Inputs	13
9	Results	16
10	References	20

1 Principle

The SIM-AUR module performs the simulation and auralization of electro-dynamic transducers based on large signal modelling. The simulated model may represent a real or fictitious driver and enclosure system, either exported using the Linear Parameter Measurement (LPM), the Large Signal Identification (LSI) or the Simulation 2.0 (SIM2) module. Using the common wave-file format as stimulus, any kind of signal may be applied. The simulation considers the dominant nonlinearities of the driver (motor and suspension), dynamic thermal effects (compression due heating of the voice-coil), the enclosure (air compression, port losses, passive radiator suspension) and radiation (Doppler effect).

By using a time-lapse technique, the long term temperature of voice-coil, pole tips and magnet can be approximately determined. Using this data, interesting sections of the input stimulus can be identified and later on simulated in detail.

Using an auralization technique, nonlinear effects can be separated from the simulated transducer without affecting the internal states. The effect can be separated for every state variable of the electro-mechanical system. Besides analysis of the separated signals, root-cause analysis and auralization of the distortion signal can be performed. The auralization can be used as basis for A/B tests even in prototyping, to determine the impact of design choices to the listener.

2 Operation Principle

General Scheme		- A			
General Scheme		SIM-AUR Simulation/Auralization			
	SIM-AUR Auralization				
		Sivi-Aon Aufalization			
	The SIM-AUR module b	pasically consists of 2 modes. Every mode is used for a distinct			
		nodule. A default workflow is shown in the picture above. The			
	two available operatio	·			
	Simulation:	The "Simulation"-mode is used to determine the long term			
		performance of the transducer. In respect to the states of			
		the electro-mechanical system, thermal states are chang-			
		ing relative slow (time constant of the magnet might be			
		about ~1.5 h). To speed up the prediction of the thermal			
		states, a time-lapse technique can be used. The predicted			
		temperatures can reveal section of great interest (e.g. sud-			
		den changes in the signal energy).			
	Auralization:	The "Auralization"-mode is used to auralize the simulated			
		transducer. After performing the auralization, you can listen			
		to the predicted sound pressure and virtually in- or decrease			
		the distortions of the transducer via a very simple mixing			
		console. If you want to change the possible gain factors of			
		the distortion part S_{dis} , no new auralization has to be performed.			
Simulation	This mode performs a	long-term thermal simulation of the loudspeaker / -system.			
		the setup parameters describing the speaker-model as well as			
		lues are provided automatically to depending operations. The			
		be precise (solving the speaker-model over the full stimulus			
		ling rate f_{sample}) or using the time-lapse technique (solving the			
	1 -	ort times and predict the power and effective displacement /			
	-	. Please note that a simulation using time-lapse technique will			
	1	solutions on special points. Thus, if you are interested in the			
		ur, you may avoid the time-lapse technique.			
	After finishing the ope	ration, you can specify a section of interest and automatically			
	generate an "Auralizat	tion"-operation, which can be used for further investigations.			
Auralization	The "Auralization"-ope	eration is used to calculate the precise speaker-model in a user			
	defined target section.	The operation gives insight in the state of the transducer (e.g.			
	_	lissipated powers, bypass factor) as well as the "Total Distor-			
		ne the impact of the nonlinearities. Depending on the solving			
		ation"-operation (either time-lapse or precise), the results of			
		vary from the "Simulation"-operation.			
	-	lso auralize the predicted transducer sound pressure signal.			
		console, you can virtually diminish or enhance the nonlinear			
	distortion part p_{dis} in the	he auralized signal.			

2.2 Applications

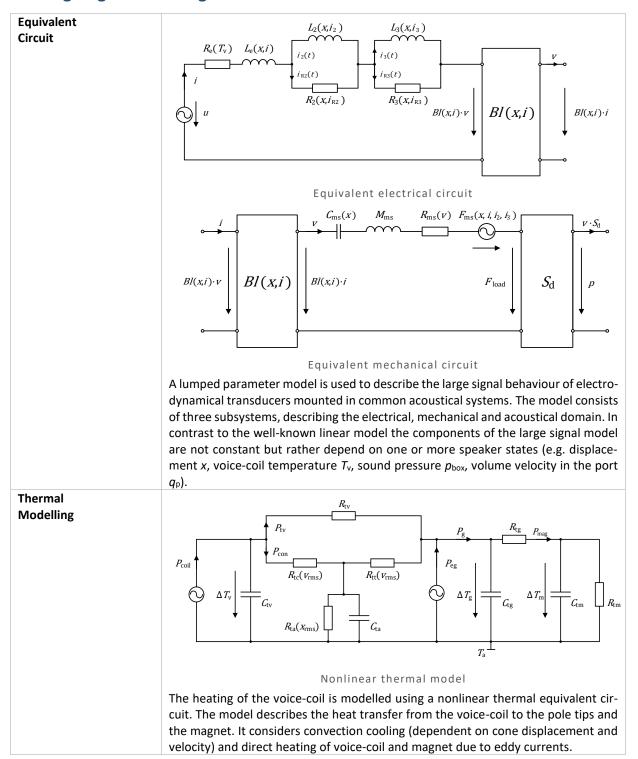
Long-term response only (using time-lapse)

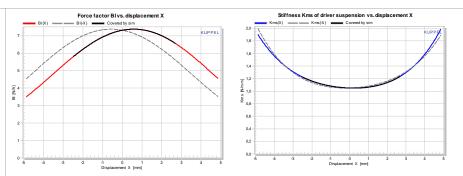
For an assessment of the long-term performance of the transducer it may be sufficient to run a thermal simulation only. The simulation data helps to identify critical regions of excitation and estimate the thermal response of the transducer in the target application. For a fast estimation it is convenient to use the time-lapse technique.

Assess and auralize signal distortion in distinct sections

The user may want to assess the nonlinear distortion of the transducer in distinct sections of a long-term performance. In order to get meaningful values such as the *Total Distortion Ratio* (TDR) an initial identification of the long-term behaviour must be performed. For a fast estimation, the time-lapse technique decreases the simulation time significant. Afterward, a precise simulation on a specified section may be performed giving access to the precise solutions of the section such as a detailed insight in the transducer states.

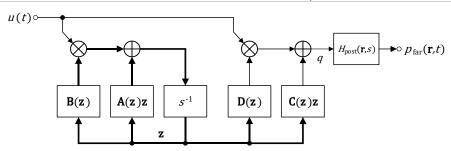
In addition, the user can listen to the predicted sound pressure signal p_{dis} of the transducer. The data is available for either analysis or export as wave-file.


Auralize signal distortion


In some cases, it might be of interest to directly auralize the nonlinear signal distortion. For that cases, the SIM-AUR offers the possibility to directly auralize the signal without running a simulation in prior.

In that case, the user may choose the mode "Auralization (independent)".

3 Large signal modeling


Parameters

The linear, nonlinear and thermal parameters of the driver can be identified using the Large Signal Identification module (LSI), which is part of the KLIPPEL ANALYZER SYSTEM. Additionally, the user is able to import parameters modified or identified using the Simulation 2.0 module (SIM2). The driver parameters can be copied to the clipboard and imported to the SIM-AUR. No import parameters are required to consider the nonlinear compliance of the air in the enclosure and nonlinear radiation due to the Doppler effect.

To edit the parameters (both linear/nonlinear) of the transducer model, the preferences of the SIM2 module should be used and can be imported to the SIM-AUR.

State Space Model

$$\dot{\mathbf{z}}(t) = \mathbf{A}(\mathbf{z})\mathbf{z}(t) + \mathbf{B}(\mathbf{z}) \cdot u(t)$$

 $q(t) = \mathbf{C}(\mathbf{z})\mathbf{z}(t) + \mathbf{D}(\mathbf{z}) \cdot u(t)$

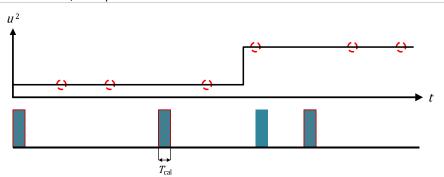
$$p_{far}(t) = h_{post}(t) * q(t)$$

using

- u(t) is the stimulus (input signal),
- comprises the state variables of the nonlinear lumped equivalent cirz cuit represented by the nonlinear parameters A(z), B(z), C(z) and D(z)with $\mathbf{z}^T = [x, v, i, i_2, i_3, p_{\text{box}}, q_p, p_{\text{rear}}, x_p],$
- q(t)is the acoustical source signal,
- $h_{\text{post}}(t)$ is the impulse response of the linear post filter representing cone vibration and radial propagation,
- $p_{far}(t)$ is the sound pressure at the listening point

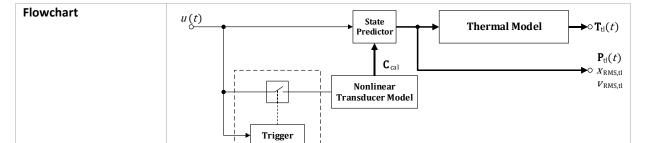
4 Time-lapse Technique

Objectives


Increase of voice coil temperature Delta Tv (t) and electrical input power P (t)

To assess the long time performance of the transducer, time consuming measurements or simulations must be performed. The longest time constants occur in the thermal system, which are a result of the slow heating of the magnet structure. As shown in the picture above, the voice-coil temperature of the transducer is directly depending on the dissipated power. Since the thermal variation is relatively slow compared to the electro-mechanical transducer, a significant increase in simulation speed can be achieved by predicting the dissipated power and effective state variables.

The most important objectives are:


- Fast thermal estimation of the long-term transducer performance.
- Exploit critical working conditions due strong thermal heating.
- Find regions of interest for further investigation of the thermal power flows, to improve the thermal behaviour of the transducer.

Basic Principle

For a fast prediction of the long term temperature response of the speaker, a simplified transducer model is used. To cope with the nonlinear performance of the speaker, the elements of the simplified model can be determined by solving the nonlinear model over a specific section $T_{\rm cal}$. Therefore, this process is therefore called "calibration" and represented by the blue blocks in the upper figure. Under the assumption of relative slow variations in the spectral properties of the input signal, it can be assumed that the temperatures can be predicted.

In case the signal properties have changed, the prediction may become invalid. To increase the prediction accuracy, multiple calibrations can be performed. Using monitoring of the input signal, a new estimation of the calibration parameters can be automatically triggered. In the upper graph, the red circles represents timestamps, when the signal is checked. If a change in the spectral properties is identified, an additional calibration is performed automatically to ensure a higher accuracy in the temperature prediction.

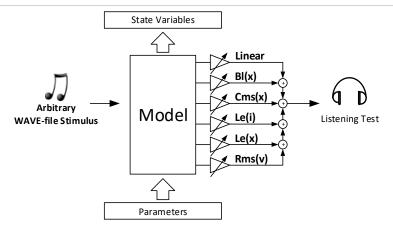
To predict the dissipated power of the transducer, the nonlinear transducer model in the large signal domain is solved over a distinct time (calibration time $T_{\rm cal}$). Using the precise solution, calibration parameters are calculated. Afterward, the state variables can be predicted approximately using the input stimulus and the calibration parameters. The temperatures are predicted using the nonlinear thermal model as described in 0.

u(t) is the stimulus (input signal),

Signal Monitoring

 \mathbf{C}_{cal} are the calibration parameters $\mathbf{C}_{\text{cal}}^{\mathsf{T}} = [Y_{\text{coil,cal}}, Y_{\text{eg,cal}}, X_{\text{cal}}, V_{\text{cal}}]$ used to predict the input variables of the thermal model,

 $P_{tl}(t)$ are the predicted dissipated powers of the transducer $P_{tl}=[P_{coil,tl},P_{eg,tl}]$,

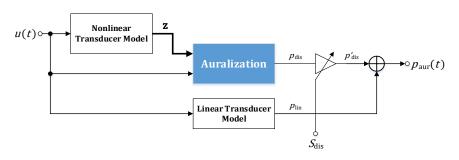

 $x_{RMS,tl}$ is the predicted effective displacement,

 $v_{\text{RMS,tl}}$ is the predicted effective velocity,

 $\mathbf{T}_{tl}(t)$ are the predicted temperatures of transducer $\mathbf{T}_{tl}^T = [T_{v,tl}, T_{g,tl}, T_{m,tl}]$

5 Auralization

Overview



The new auralization technique is used to separate distinct nonlinear effects, such as effects due to nonlinear Bl, $L_{\rm e}$ or $R_{\rm ms}$ or other, without affecting the model state. These separation does not affect the speaker model itself. The separated effects can be used to determine the root cause of the nonlinear distortion. Also, the separated signal can be stored as a wave-file, gaining the possibility to easy design auditory experiments to evaluate the impact on audible quality.

The most important objectives are:

- Separation of nonlinear effects without affecting the modelled speaker.
- Exploit the main source of nonlinear distortion in the output signal.
- Design auditory experiments to evaluate the audible impact of the nonlinear distortion.
- Evaluate the audible performance of the speaker at the target application.
- Find optimal performance-cost ratio.
- Assess distortion ratio in audio signals.

Basic Principle

The auralization is based on the precise nonlinear simulation of the transducer. Since all states \mathbf{z} , which are used to describe the speaker at a distinct sample \mathbf{k} , are known, nonlinear effects in each state variable can easily be separated using separation matrices. This technique gains the benefit of separating the nonlinear effects but not affecting the simulated speaker itself. The separated distortion signal p_{dis} can easily scaled using a linear gain S_{dis} .

u(t) is the stimulus (input signal),

 $p_{dis}(t)$ is the sound pressure of the nonlinear distortion,

 $p_{lin}(t)$ is the sound pressure of the linear signal,

 $S_{dis}(t)$ is the linear gain factor for amplifying p_{dis} ,

 $p_{aur}(t)$ is the auralized signal (output signal).

6 Simulation and Auralization Technique

6.1 Input Signal	
Format	Any external wave-file may be used as stimulus. The processing may be applied to the selected left and right channel or to the mono signal. Also, the user can chose folders containing wave-files. The folders are recursive processed and all containing wave-files are used for simulation, gaining the benefit of creating simple simulation playlists.
6.2 Solving the diff	erential equations
Numerical Integration	The large signal model with the specified driver and enclosure parameters is excited by the input wave-file. The electrical, mechanical and acoustic state variables of the model are calculated using numerical integration algorithms. Their waveform may be viewed versus time
Deactivation of Nonlinearities	To find the dominant source of distortion and to investigate design choices, the following nonlinearities might be enabled or disabled during simulation: • force factor nonlinearity Bl(x) vs. displacement x • force factor nonlinearity Bl(i) vs. current i • inductance nonlinearity due to Le(x) vs. displacement x • inductance nonlinearity Le(i) vs. current i • nonlinearity of para-inductances L2(x,iR2) • nonlinearity of resistances R2(x,iR2) due to eddy current losses • mechanical suspension nonlinearity due to Kms(x) • mechanical resistance Kms(v) • reluctance force Fm (electromagnetic drive) • adiabatic compression in enclosure Cab(pbox) • adiabatic compression of rear enclosure Cr(prear) • nonlinearity due to leakage losses Ral(pbox) • nonlinearity of port losses Rap(vp) • nonlinearity of passive radiator suspension losses Rmp(vp) • passive radiator stiffness nonlinearity Kmp(xp) If a nonlinearity is disabled, the small signal parameter value is used.
Separation of nonlinear effects	lated values may differ from separation in the "AUR"-operation. The basis of the auralization and psychoacoustical evaluation of sound quality is the decomposition of the total sound pressure signal $p_{\text{aur}}(t) = p_{\text{lin}}(t) + \sum_{n=1}^{N} p_{\text{dis}p}(t)$
	 linear signal component plin(t) using the small signal parameters in A(z=0), B(z=0), C(z=0), D(z=0) and nonlinear distortion components such as pdis,1(t) due to force factor nonlinearity Bl(x) vs. displacement x pdis,2(t) due to force factor nonlinearity Bl(i) vs. current i pdis,3(t) due to inductance nonlinearity Le(x) vs. displacement x pdis,4(t) due to inductance nonlinearity Le(i) vs. current i pdis,5(t) due lossy inductance ZL(f,x) vs. x pdis,6(t) due to lossy inductance ZL(f,i) vs. i pdis,7(t) due to mechanical suspension nonlinearity Kms(x) pdis,8(t) due to nonlinear mechanical resistance Rms(v) pdis,9(t) due to adiabatic compression in enclosure Cab(pbox) pdis,10(t) due to adiabatic compression of rear enclosure Cr(prear)

	 p_{dis,11}(t) due to leakage losses R_{al}(p_{box})
	• $p_{dis,12}(t)$ due to nonlinearity of port losses $R_{ap}(v_p)$
	• $p_{dis,13}(t)$ due to nonlinearity of passive radiator suspension losses $R_{mp}(v_p)$
	• $p_{\rm dis,14}(t)$ due to passive radiator stiffness nonlinearity $K_{\rm mp}(v_{\rm p})$
	Note: In the present version, the distinct separation is deactivated and will be enabled in future versions. The auralized signal contains the linear part of the sound pressure output as well as a scalable nonlinear part, separated by the technique presented in section 5.
Initial Conditions	The displacement of the voice coil at the beginning of the numerical integration may be specified by the user to investigate the stability of the driver. Performing two simulations with varied initial displacement ($x(t=0)=x_{\min}$ and $x(t=0)=x_{\max}$) reveal critical frequencies where the driver bifurcates into different solutions.
Cone, Radiation, Room	Actually, the sound pressure in the far field is calculated using a simple model. A piston like cone and "ideal" 2π - or 4π -radiation without any deterioration of the room are assumed.
Heating of voice coil,	Simultaneously with the solution of the electrical, mechanical and acoustical system
pole tips and magnet	the temperature of the voice coil, the pole tips and the magnet will be predicted
	using the nonlinear thermal model and the thermal parameters. The thermal dynamics of the loudspeaker according to the thermal time constants of the coil, gap and magnet are simulated.
Different Solvers	Different algorithms for the numerical integration are provided. For certain combi-
	nations of model parameter values the system behaves stiff due to large voice-coil
	displacements. In this case a special solver is used that can cope with the problem.
	Note: Any numerical simulation algorithm may fail to converge. This is especially the case for very stiff models. Normally a divergence can easily be detected as meaningless results are produced.

7 Components of the SIM-AUR

For performing a SIM-AUR operation, either the Distortion Analyzer, Klippel Analyzer 3 hardware unit or a Klippel Dongle is required.

No additional hardware is required.

8 Inputs

8.1 SIM-AUR Simulation

The following parameters can be imported via clipboard on the "Im/Export" property page of the module. LPM, LSI, SIM2 or SIM-AUR data import is supported. It is recommended to change power-series related parameters using the property pages "Transducer" and "System" of the SIM2 (Simulation 2.0) module. All parameters are presented in a separate window to check the values and validate the nonlinear curves.

	Symbol	Min	Typical	Max	Unit	
Measurement Setup			I.			
Mode		SIM-AUR Mode: Simulation or Auralization				
Cut and Auralize			Create a new Auralization in between the section defined by the cursors, using the simulated initial values.			
Solver		Solver type	used for the o	peration: Fas	t or Precise	
Stimulus						
Stimulus source path			Path to the i	nput signal		
Used channel		Channel of th	ne stimulus file	e used for the	e simulation.	
Input gain (voltage at loudspeaker terminals)	G_{input}	-100		120	dB	
Time-lapse factor	<i>r</i> _{tl}	1	5			
Initial conditions						
Initial displacement of the voice-coil	x(<i>t</i> =0)		0		mm	
Lumped driver parameters (advanced)						
DC resistance of the cold voice-coil at ambient temperature	Re	0.01			Ω	
Force factor (BI product; linear)	ВІ	0.1			N/A	
Voice-coil inductance (linear)	Le	0.01			mH	
Electrical resistance due to eddy current losses	R ₂	0.01			Ω	
Voice-coil para-inductance	L ₂	0.01			mH	
Moving mass including air load	M_{ms}	0.001		5000	g	
Mechanical resistance of suspension losses (linear)	R ms	>0		10000	Ns/m	
Stiffness of suspension	K _{ms}	>0		100	N/ _{mm}	
Coefficients of power series <i>BI</i> (<i>x</i>)		$BI(x) > 0$ for $x_{min} < x < x_{max}$ x_{min} minimal simulated displacement x_{max} maximal simulated displacement				
Coefficients of power series <i>Bl(i)</i>		j _{min}		$m_{\text{in}} < i < i_{\text{max}}$ mulated currelimulated currelimulated currelimulated currelimated currelimates and the currelimates are set of t		
Coefficients of power series $L_e(x)$			$L_{\rm e}(x) > 0$ for x	$_{\min} < \chi < \chi_{\max}$		

	Symbol	Min	Typical	Max	Unit	
Coefficients of power series $L_e(i)$ $L_e(i) > 0$ for $i_{min} < i < i_{max}$						
Coefficients of power series $R_2(x)$ $R_2(x) > 0$ for $x_{min} < x < x_{max}$						
Coefficients of power series $L_2(x)$		$L_2(x) > 0$ for $x_{min} < x < x_{max}$				
Coefficients of power series $K_{ms}(x)$		$K_{\text{ms}}(x) > 0 \text{ for } x_{\text{min}} < x < x_{\text{max}}$				
Coefficients of power series $R_{ms}(v)$			$R_{ms}(v) > 0 \text{ for } v$	v _{min} < v < v _{ma}	x	
		V _{min}		mulated velo	•	
		V _{max}	maximal si	mulated vel	•	
Area of diaphragm	Sd	0.1			cm ²	
Lumped acoustical parameters (advanc Note: Several lumped parameters are only sho	•	on the chosen enclosi	ure configuration.			
Enclosure type		ffle, closed box, v			or. bandpass.	
Volume of air in enclosure	V _b	0.01	- ··· , _[·		dm³ (liter)	
Volume of the rear enclosure	V _r	0.01			dm³ (liter)	
Area of the port	Sp	>0			cm ²	
Acoustic stiffness of air in enclosure	K _{ab}		ox activating r	l nonlinear be		
Acoustic mass of air moved in vent	Map	>0			N_{m^5}	
	ТИТАР	70				
Acoustic resistance of enclosure losses (linear)	Ral	> 0			kNs/ _m 5	
Acoustic resistance of vent losses (linear)	Rap	> 0			kNs/ _m 5	
Mechanical resistance of passive radiator suspension losses (linear)	R_{mp}	> 0			kNs/ _m 5	
Stiffness of passive radiator suspension (linear)	K_{mp}	> 0			N/ _{mm}	
Acoustic stiffness of air in rear enclosure	Kr	Checkb	ox activating r	nonlinear be	haviour	
Coefficients of power series $R_{\rm al}(p_{ m box})$		$R_{\rm al}(p_{\rm box})$ for $p_{\rm box,min} < p_{\rm box} < p_{\rm box,max}$ $p_{\rm box,min}$ minimal simulated sound pressure inside the enclosure $p_{\rm box,max}$ maximal simulated sound pressure inside the enclosure				
Coefficients of power series $R_{\rm ap}(v_{\rm p})$		$R_{\rm ap}(v_{\rm p})$ for $v_{\rm p,min} < v_{\rm p} < v_{\rm p,max}$ $v_{\rm p,min}$ minimal simulated velocity of air in port $v_{\rm p,max}$ maximal simulated velocity of air in port				
Coefficients of power series $R_{mp}(v_p)$		$R_{mp}(v_p)$ for $v_{p,min} < v_p < v_{p,max}$				
Coefficients of power series $K_{mp}(x_p)$		$K_{mp}(x_p)$ for $x_{p,min} < x_p < x_{p,max}$ $x_{p,min}$ minimal simulated passive radiator displacement $x_{p,max}$ maximal simulated passive radiator displacement				
Model for cone, radiation, room		• Pistor	n / 2π / anecho n / 4π / anecho			

	Symbol	Min	Typical	Max	Unit
Distance between diaphragm and listening position	r	0.001			m
Thermal model (advanced)		1			
Material of voice-coil wire		ninium or user o ue heating of th		the resistan	ce value of the
Temperature coefficient	δ	> 0			-
Thermal resistance of path from coil to pole tips and magnet surface	R _{tv}	0.001			K/W
Thermal resistance of path from pole tips to magnet and frame	R _{tg}	0.001			K/W
Thermal resistance of path from magnet to ambient air	R _{tm}	0.001			K/W
Thermal capacity of the voice-coil	Ctv	0			Ws/ _K
Thermal capacity of the gap	C_{tg}	0			Ws/ _K
Thermal capacity of the magnet	C_{tm}	0			Ws/ _K
Convection cooling parameter considering the effect of cone displacement	r _x	>0			Ws/ _{Km}
Convection cooling parameter describing the dependence of R_{tc} from cone velocity	r _v	> 0			Ws/ _{Km}
Convection cooling parameter describing the dependence of $R_{\rm tt}$ from cone velocity	r _b	>0			Ws/ _{Km}
Factor describing the distribution of heat caused by eddy currents on voice-coil and magnet	α	>0			
8.2 SIM-AUR Auralization					
Interval describing the linear gain applied to the distortion components	Sdis	-100		100	dB
Step width of the gain factors	S _{step}	-100	6	100	dB
State variable			t containing thd d / or displayed		state variables

9 Results

esult Window	"Simulation"	"Auralization"
oltage / Current	✓	✓
splacement	✓	✓
elocity	✓	✓
mperature	✓	✓
out Power	✓	✓
ermal Power Flow	✓	✓
pass Factor		✓
e(t)		✓
otal Distortion Ratio		✓
L		✓
ate Variable		✓
ate Distortion Ratio		✓
est Factor		✓
odel Parameters	✓	✓
ralization		✓
(x)	✓	✓
(x)	✓	✓
(i)	✓	✓
(x)	✓	✓
(x)	✓	✓
ns(x)	✓	✓
ns(v)	✓	✓
(pbox)	✓	✓
p(vp)/Rmp(vp)	✓	✓
np(xp)	✓	✓
((x)	✓	✓

9.1 Result Parameters	
9.1.1 Model Parameters	
Nonlinear Parameters	Shows the activated/deactivated nonlinearities of the speaker model.
Thiele/Small Parameters	Thiele/Small parameters of the transducer model.
Thermal System Parameters	Parameters of the thermal transducer model.
Enclosure Parameters	Linear enclosure parameters of the model.
Cone, Radiation, Room	Simulated radiation condition and the distance from the source point.

9.1.2 Auralization

The "Auralization"-window can be used to play a mixed auralized the far-field sound pressure p_{aur} with

$$p_{\text{aur}} = p_{\text{lin}} + S_{\text{dis}} \cdot p_{\text{nl}}$$

by pressing the buttons. The mixing depends on the chosen values S_{dis} and S_{step} . Changing these parameters will update the result page, no additional auralization must be performed. This window displays the TDR of the auralized signal.

This output page can be exported using the "Export"-button and inspected in every web-browser.

9.2 Result Curves

Note: The number of displayed points is fixed. Therefore, decreasing the size of a detailed section will lead to an increasing of the temporal resolution. The minimum achievable time-step is T_{data} = 100 ms. Peak, bottom, DC and RMS values are determined using the temporal resolution. Therefore, max(RMS) equals the maximum effective value under respect of the current time-step.

Result windows of the "Simulation"-operation may include curves determined by the time-lapse technique. Results calculated using the time-lapse technique are approximated values and may not be match with measurements or a precise simulation.

Grey curves are hidden by default.

Voltage/Current	Shows the maximum of the absolute as well as the RMS value of the voltage at terminals \boldsymbol{u} and input current \boldsymbol{i} versus measurement time \boldsymbol{t} .			
	Symbol	Description	Unit	
	$u_{ m abs,max}$	Maximum value of the absolute terminal voltage <i>u</i>	V	
	U _{RMS}	Effective value of the terminal voltage <i>u</i>	V	
	<i>İ</i> abs,max	Maximum value of the absolute input current i	Α	
	i _{DC}	Maximum value of the short time DC in input current i	Α	
	i _{RMS}	Effective value of the input current i	Α	
Displacement	ment x in	t window shows the maximum absolute and RMS values of respect to the time <i>t</i> . In the mode "Auralization", also the temperature maximum absolute displacement can be inspected.		
	Symbol	Description	Unit	
	X _{abs,max}	Maximum value of the absolute voice-coil displacement	mm	
	X _{RMS}	Effective voice-coil displacement	mm	
	X _{dis,abs,max}	Maximum value of the absolute voice-coil displacement	mm	
Velocity	•	t window shows the maximum absolute as well as the RMS in respect to the time t .	values of	
	Symbol	Description	Unit	
	V _{abs,max}	Maximum value of the absolute voice-coil velocity	m/s	
	V _{RMS}	Effective voice-coil velocity	m/s	

	Temperature		This window shows the mean and peak difference temperatures of the voice-coil, gap and magnet versus measurement time t .			
		Symbol	Description	Unit		
		$dT_{\rm v,peak}$	Peak difference temperature of the voice-coil	К		
		$dT_{\rm g,peak}$	Peak difference temperature of the pole tips	К		
		$dT_{m,peak}$	Peak difference temperature of the magnet	K		
		$dT_{v,mean}$	Mean difference temperature of the voice-coil	K		
Input PowerShows the input powers of the thermal model versus measurement time t .SymbolDescriptionUnit $P_{Re, mean}$ Peak power dissipated over the DC-Part of the voice-coil impedance.WThermal Power FlowMean power dissipated over the DC-Part of the voice-coil impedance.SymbolDescriptionUnit $P_{coll,mean}$ Mean power dissipated powers versus measurement time t of the thermal model.SymbolDescriptionUnit $P_{coll,mean}$ Mean power dissipated in voice-coil and formerW $P_{coll,mean}$ Mean power dissipated in R_e W $P_{Rc,mean}$ Mean power dissipated in R_e W $P_{Rc,mean}$ Mean power transferred to air in gap due convection coolingW $P_{con,mean}$ Mean power transferred to the pole tips from coilW $P_{con,peak}$ Peak power transferred to the pole tips from coilW $P_{tv,mean}$ Mean power transferred to the pole tips from coilW $P_{tv,mean}$ Mean power transferred to the pole tipsW $P_{g,mean}$ Mean power transferred to the pole tipsW $P_{g,mean}$ Peak power transferred to the pole tipsW $P_{g,mean}$ Peak power transferred to the pole tipsW $P_{g,mean}$ DescriptionUnit V $V(t) = \frac{P_{con}(t) + P_{eg}(t)}{P_{con}(t) + P_{eg}(t) + P_{ev}(t)}$ - V This window shows the DC resistance of the voice-coil versus measurement time t . V SymbolDescriptionUnit		$dT_{\rm g,mean}$	Mean difference temperature of the pole tips	K		
		$dT_{\rm m,mean}$	Mean difference temperature of the magnet	K		
$P_{Re,mean} \begin{array}{c} P_{Re,mean} \\ P_{Re,peak} \\ P_{Re,peak} \\ \end{array} \begin{array}{c} P_{Re,peak} \\ P_{Re,peak} \\ P_{Re,peak} \\ \end{array} \begin{array}{c} Mean power dissipated over the DC-Part of the voice-coil impedance. \\ \hline \\ P_{Re,peak} \\ \hline \\ P_{Re,peak} \\ \hline \end{array} \begin{array}{c} Mean power dissipated over the DC-Part of the voice-coil impedance. \\ \hline \\ This window shows the effective dissipated powers versus measurement time to of the thermal model. \\ \hline \\ Symbol Description \qquad Unit \\ P_{Coll,mean} \\ P_{Coll,mean} \\ P_{Rea} power dissipated in voice-coil and former W \\ P_{Re,mean} \\ P_{Re,mean} \\ P_{Rea} power dissipated in voice-coil and former W \\ P_{Re,mean} \\ P_{Rea} power dissipated in Re \\ P_{Conl,mean} \\ P_{Rea} power dissipated in Re \\ P_{Conl,mean} \\ P_{Rea} power transferred to air in gap due convection cooling \\ P_{tv,mean} Mean power transferred to air in gap due convection cooling \\ P_{tv,mean} Mean power transferred to the pole tips from coil W \\ P_{tv,mean} Mean power transferred to the pole tips from coil W \\ P_{g,mean} P_{g,peak} Peak power transferred to the pole tips W \\ P_{g,peak} P_{g,peak} peak power transferred to the pole tips W \\ P_{g,peak} P_{g,peak} peak power transferred to the pole tips W \\ P_{g,peak} P_{g,peak} peak power transferred to the pole tips W \\ P_{g,peak} P_{g,peak} peak power transferred to the pole tips W \\ P_{g,peak} P_{g,peak} peak power transferred to the pole tips W \\ P_{g,peak} P_{g,peak} peak power transferred to the pole tips W \\ P_{g,peak} P_{g,peak} peak power transferred to the pole tips W \\ P_{g,peak} P_{g,peak} peak power transferred to the pole tips W \\ P_{g,peak} P_{g,peak} peak power transferred to the pole tips W \\ P_{g,peak$	Input Power	Shows the	input powers of the thermal model versus measurement tir	me <i>t</i> .		
$P_{Re, peak} \qquad \text{impedance.} \qquad W$ $P_{Re, peak} \qquad \text{Mean power dissipated over the DC-Part of the voice-coil impedance.} \qquad W$ $Thermal Power Flow$ $This window shows the effective dissipated powers versus measurement time to of the thermal model.} \qquad Unit $		Symbol	Description	Unit		
Thermal Power Flow This window shows the effective dissipated powers versus measurement time to fit the thermal model. Symbol Description Unit $P_{coll,mean}$ Mean power dissipated in voice-coil and former W $P_{Re,mean}$ Mean power dissipated in voice-coil and former W $P_{Re,mean}$ Mean power dissipated in R_e W $P_{Re,neak}$ Peak power dissipated in R_e W $P_{Con,mean}$ Mean power transferred to air in gap due convection cooling $P_{con,peak}$ Peak power transferred to air in gap due convection w $P_{tv,mean}$ Mean power transferred to the pole tips from coil W $P_{tv,peak}$ Peak power transferred to the pole tips from coil W $P_{g,mean}$ Mean power transferred to the pole tips from coil W $P_{g,mean}$ Mean power transferred to the pole tips W $P_{g,peak}$ Peak power transferred to the pole tips W $P_{g,peak}$ Peak power transferred to the pole tips W This window shows the bypass factor γ versus measurement time t . Symbol Description Unit V (t) = $\frac{P_{con}(t) + P_{eg}(t)}{P_{con}(t) + P_{eg}(t) + P_{tv}(t)}$ This window shows the DC resistance of the voice-coil versus measurement time t .		P _{Re, mean}	· · ·	W		
of the thermal model. Symbol Description Unit $P_{\text{coil,mean}}$ Mean power dissipated in voice-coil and former W $P_{\text{coil,peak}}$ Peak power dissipated in voice-coil and former W $P_{\text{Re,mean}}$ Mean power dissipated in R_{Re} W $P_{\text{Re,mean}}$ Mean power dissipated in R_{Re} W $P_{\text{Re,peak}}$ Peak power dissipated in R_{Re} W $P_{\text{con,mean}}$ Mean power transferred to air in gap due convection cooling $P_{\text{con,peak}}$ Peak power transferred to air in gap due convection w $P_{\text{tv,mean}}$ Mean power transferred to the pole tips from coil W $P_{\text{tv,peak}}$ Peak power transferred to the pole tips from coil W $P_{\text{g,mean}}$ Mean power transferred to the pole tips $P_{\text{to,mean}}$ Mean power transferred to the pole tips $P_{\text{to,mean}}$ Peak power transferred to the pole tips W $P_{\text{g,peak}}$ Peak power transferred to the pole tips W $P_{\text{g,peak}}$ Peak power transferred to the pole tips W $P_{\text{to,mean}}$ Description Unit $P_{\text{to,mean}}$ Unit $P_{\text{to,mean}}$ Description Unit This window shows the DC resistance of the voice-coil versus measurement time $P_{\text{to,mean}}$ Unit $P_{\text{to,mean}}$ Description Unit		$oldsymbol{P}_{Re, peak}$	· · · ·	W		
$P_{\text{coil,mean}} \qquad \text{Mean power dissipated in voice-coil and former} \qquad \mathbb{W}$ $P_{\text{Coil,peak}} \qquad \text{Peak power dissipated in voice-coil and former} \qquad \mathbb{W}$ $P_{\text{Re,mean}} \qquad \text{Mean power dissipated in } R_{\text{e}} \qquad \mathbb{W}$ $P_{\text{Re,peak}} \qquad \text{Peak power dissipated in } R_{\text{e}} \qquad \mathbb{W}$ $P_{\text{Con,mean}} \qquad \text{Mean power transferred to air in gap due convection cooling} \qquad \mathbb{W}$ $P_{\text{con,peak}} \qquad \text{Peak power transferred to air in gap due convection cooling} \qquad \mathbb{W}$ $P_{\text{tv,mean}} \qquad \text{Mean power transferred to the pole tips from coil} \qquad \mathbb{W}$ $P_{\text{tv,mean}} \qquad \text{Mean power transferred to the pole tips from coil} \qquad \mathbb{W}$ $P_{\text{g,mean}} \qquad \text{Mean power transferred to the pole tips} \qquad \mathbb{W}$ $P_{\text{g,peak}} \qquad \text{Peak power transferred to the pole tips} \qquad \mathbb{W}$ $P_{\text{g,peak}} \qquad \text{Peak power transferred to the pole tips} \qquad \mathbb{W}$ $P_{\text{g,peak}} \qquad \text{Peak power transferred to the pole tips} \qquad \mathbb{W}$ $P_{\text{g,peak}} \qquad \text{Peak power transferred to the pole tips} \qquad \mathbb{W}$ $P_{\text{g,peak}} \qquad \text{Peak power transferred to the pole tips} \qquad \mathbb{W}$ $P_{\text{g,peak}} \qquad \text{Peak power transferred to the pole tips} \qquad \mathbb{W}$ $P_{\text{g,peak}} \qquad \text{Peak power transferred to the pole tips} \qquad \mathbb{W}$ $P_{\text{g,peak}} \qquad \text{Peak power transferred to the pole tips} \qquad \mathbb{W}$ $P_{\text{g,peak}} \qquad \text{Peak power transferred to the pole tips} \qquad \mathbb{W}$ $P_{\text{g,peak}} \qquad \text{Peak power transferred to the pole tips} \qquad \mathbb{W}$ $P_{\text{g,peak}} \qquad \text{Peak power transferred to the pole tips} \qquad \mathbb{W}$ $P_{\text{g,peak}} \qquad \text{Peak power transferred to the pole tips} \qquad \mathbb{W}$ $P_{\text{g,peak}} \qquad \text{Peak power transferred to the pole tips} \qquad \mathbb{W}$ $P_{\text{g,peak}} \qquad \text{Peak power transferred to the pole tips} \qquad \mathbb{W}$ $P_{\text{g,peak}} \qquad \text{Peak power transferred to the pole tips} \qquad \mathbb{W}$ $P_{\text{g,peak}} \qquad \text{Peak power transferred to the pole tips} \qquad \mathbb{W}$ $P_{\text{g,peak}} \qquad \text{Peak power transferred to the pole tips} \qquad \mathbb{W}$ $P_{\text{g,peak}} \qquad \text{Peak power transferred to the pole tips} \qquad \mathbb{W}$	Thermal Power Flow		This window shows the effective dissipated powers versus measurement time			
$P_{\text{Coil,peak}}$ Peak power dissipated in voice-coil and formerW $P_{\text{Re,mean}}$ Mean power dissipated in R_{e} W $P_{\text{Re,peak}}$ Peak power dissipated in R_{e} W $P_{\text{Con,mean}}$ Mean power transferred to air in gap due convection coolingW $P_{\text{con,peak}}$ Peak power transferred to air in gap due convection coolingW $P_{\text{tv,mean}}$ Mean power transferred to the pole tips from coilW $P_{\text{tv,peak}}$ Peak power transferred to the pole tips from coilW $P_{\text{g,mean}}$ Mean power transferred to the pole tipsW $P_{\text{g,peak}}$ Peak power transferred to the pole tipsWBypass factorThis window shows the bypass factor γ versus measurement time t .SymbolDescriptionUnit V <		Symbol	Description	Unit		
$P_{Re,mean}$ Mean power dissipated in R_e W $P_{Re,peak}$ Peak power dissipated in R_e W $P_{con,mean}$ Mean power transferred to air in gap due convection coolingW $P_{con,peak}$ Peak power transferred to air in gap due convection coolingW $P_{tv,mean}$ Mean power transferred to the pole tips from coilW $P_{tv,peak}$ Peak power transferred to the pole tips from coilW $P_{g,mean}$ Mean power transferred to the pole tipsW $P_{g,peak}$ Peak power transferred to the pole tipsW $P_{g,peak}$ Peak power transferred to the pole tipsWBypass factorThis window shows the bypass factor γ versus measurement time t .SymbolDescriptionUnit $P_{con}(t) + P_{eg}(t)$ - $P_{con}(t) + P_{eg}(t) + P_{cv}(t)$ - $P_{con}(t) + P_{cv}(t) + P_{cv}(t)$ - $P_{con}(t) + P_{cv}(t) + P_{cv}(t)$ - $P_{cv}(t) + P_{cv$		$P_{\text{coil,mean}}$	Mean power dissipated in voice-coil and former	W		
$P_{Re,peak}$ Peak power dissipated in R_e W $P_{con,mean}$ Mean power transferred to air in gap due convection coolingW $P_{con,peak}$ Peak power transferred to air in gap due convection coolingW $P_{tv,mean}$ Mean power transferred to the pole tips from coilW $P_{tv,peak}$ Peak power transferred to the pole tips from coilW $P_{g,mean}$ Mean power transferred to the pole tipsW $P_{g,peak}$ Peak power transferred to the pole tipsW $P_{g,peak}$ Peak power transferred to the pole tipsWBypass factorThis window shows the bypass factor γ versus measurement time t .SymbolDescriptionUnit V V V V $P_{con}(t) + P_{eg}(t)$ $P_{con}(t) + P_{eg}(t)$ $P_{con}(t) + P_{eg}(t)$ $P_{con}(t) + P_{eg}(t) + P_{tv}(t)$ $P_{con}(t) + P_{eg}(t) + P_{eg}(t) + P_{eg}(t)$ $P_{con}(t) + P_{eg}(t) + P_{eg}(t)$ $P_{con}(t) + P_{eg}(t) + P_{eg}(t)$ $P_{con}(t) + P_{eg}(t) + P_{eg}(t) + P_{eg}(t)$ $P_{$		P _{coil,peak}	Peak power dissipated in voice-coil and former	W		
$P_{\text{con,mean}} \ \ \ \ \ \ \ \ \ \ \ \ \$		$P_{Re,mean}$	Mean power dissipated in R _e	W		
Pcon,mean cooling Peak power transferred to air in gap due convection cooling Ptv,mean Mean power transferred to the pole tips from coil W Ptv,peak Peak power transferred to the pole tips from coil W Pg,mean Mean power transferred to the pole tips W Pg,peak Peak power transferred to the pole tips W Pg,peak Peak power transferred to the pole tips W This window shows the bypass factor γ versus measurement time t . Symbol Description Unit This window shows the DC resistance of the voice-coil versus measurement time t . Symbol Description Unit		$P_{Re,peak}$	Peak power dissipated in R _e	W		
$P_{\text{con, peak}} \text{cooling} \\ P_{\text{tv,mean}} \text{Mean power transferred to the pole tips from coil} \\ P_{\text{tv,peak}} \text{Peak power transferred to the pole tips from coil} \\ W \\ P_{\text{g,mean}} \text{Mean power transferred to the pole tips} \\ W \\ P_{\text{g,peak}} \text{Peak power transferred to the pole tips} \\ W \\ P_{\text{g,peak}} \text{Peak power transferred to the pole tips} \\ W \\ P_{\text{g,peak}} \text{Peak power transferred to the pole tips} \\ W \\ P_{\text{g,peak}} \text{This window shows the bypass factor } \gamma \text{ versus measurement time } t. \\ \hline P_{\text{con}}(t) + P_{\text{eg}}(t) \\ P_{\text{con}}(t) + P_{\text{eg}}(t) + P_{\text{tv}}(t) \\ \hline P_{\text{con}}(t) + P_{\text{eg}}(t) + P_{\text{con}}(t) + P_{\text{eg}}(t) \\ \hline P_{\text{con}}(t) + P_{\text{eg}}(t) + P_{\text{con}}(t) + P_{\text{eg}}(t) \\ \hline P_{\text{con}}(t) + P_{\text{eg}}(t) + P_{\text{con}}(t) + P_{\text{eg}}(t) \\ \hline P_{\text{con}}(t) + P_{\text{con}}(t) + P_{\text{eg}}(t) + P_{\text{con}}(t) \\ \hline P_{\text{con}}(t) + P_{\text{con}}(t) + P_{\text{con}}(t) + P_{\text{con}}(t) + P_{\text{con}}(t) + P_{\text{con}}(t) \\ \hline P_{\text{con}}(t) + P_{\text{con}}(t) + P_{\text{con}}(t) + P_{\text{con}}(t) + P_{\text$		$P_{con,mean}$		W		
$P_{\text{tv,peak}} \qquad \text{Peak power transferred to the pole tips from coil} \qquad W$ $P_{\text{g,mean}} \qquad \text{Mean power transferred to the pole tips} \qquad W$ $P_{\text{g,peak}} \qquad \text{Peak power transferred to the pole tips} \qquad W$ $P_{\text{g,peak}} \qquad \text{Peak power transferred to the pole tips} \qquad W$ $This \text{ window shows the bypass factor } \gamma \text{ versus measurement time } t.$ $Symbol \qquad Description \qquad Unit$ $\gamma \qquad \qquad \gamma(t) = \frac{P_{\text{con}}(t) + P_{\text{eg}}(t)}{P_{\text{con}}(t) + P_{\text{eg}}(t) + P_{\text{tv}}(t)} \qquad -$ $R_{\text{e}}(t) \qquad \text{This window shows the DC resistance of the voice-coil versus measurement time } t.$ $Symbol \qquad Description \qquad Unit$		$P_{con, peak}$		W		
$P_{\rm g,mean} \qquad \text{Mean power transferred to the pole tips} \qquad W$ $P_{\rm g,peak} \qquad \text{Peak power transferred to the pole tips} \qquad W$ $Bypass factor \qquad \text{This window shows the bypass factor } \gamma \text{ versus measurement time } t.$ $Symbol \qquad Description \qquad \qquad Unit$ $\gamma \qquad \qquad \gamma(t) = \frac{P_{\rm con}(t) + P_{\rm eg}(t)}{P_{\rm con}(t) + P_{\rm eg}(t) + P_{\rm tv}(t)} \qquad -$ $R_{\rm e}(t) \qquad \qquad \text{This window shows the DC resistance of the voice-coil versus measurement time } t.$ $Symbol \qquad Description \qquad \qquad Unit$		P _{tv,mean}	Mean power transferred to the pole tips from coil	W		
$P_{\rm g,peak} \qquad \text{Peak power transferred to the pole tips} \qquad W$ $R_{\rm g,peak} \qquad \text{This window shows the bypass factor } \gamma \text{ versus measurement time } t.$ $Symbol \qquad Description \qquad \qquad Unit$ $\gamma \qquad \qquad \gamma(t) = \frac{P_{\rm con}(t) + P_{\rm eg}(t)}{P_{\rm con}(t) + P_{\rm eg}(t) + P_{\rm tv}(t)} \qquad \qquad -$ $R_{\rm e}(t) \qquad \qquad \text{This window shows the DC resistance of the voice-coil versus measurement time } t.$ $Symbol \qquad Description \qquad \qquad Unit$		P _{tv,peak}	Peak power transferred to the pole tips from coil	W		
This window shows the bypass factor γ versus measurement time t . Symbol Description Unit $ \gamma \qquad \qquad \gamma(t) = \frac{P_{\text{con}}(t) + P_{\text{eg}}(t)}{P_{\text{con}}(t) + P_{\text{eg}}(t) + P_{\text{tv}}(t)} \qquad \qquad - \\ R_{\text{e}}(t) \qquad \qquad \text{This window shows the DC resistance of the voice-coil versus measurement time } t. $ Symbol Description Unit		$P_{g,mean}$	Mean power transferred to the pole tips	W		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$P_{g,peak}$	Peak power transferred to the pole tips	W		
$\gamma \qquad \qquad \gamma (t) = \frac{P_{\rm con}(t) + P_{\rm eg}(t)}{P_{\rm con}(t) + P_{\rm eg}(t) + P_{\rm tv}(t)} \qquad - \\ R_{\rm e} (t) \qquad \qquad \qquad This window shows the DC resistance of the voice-coil versus measurement time t. \qquad $	Bypass factor	This windo	ow shows the bypass factor γ versus measurement time t .			
$R_{\rm e}\left(t ight)$ This window shows the DC resistance of the voice-coil versus measurement time t . Symbol Description Unit		Symbol	Description	Unit		
t. Symbol Description Unit		γ	$v(t) = \frac{P_{con}(t) + P_{eg}(t)}{P_{con}(t) + P_{eg}(t) + P_{tv}(t)}$	-		
	R _e (t)					
$R_{ m e}(t)$ DC resistance of the voice-coil Ω		Symbol	Description	Unit		
		$R_{\mathrm{e}}(t)$	DC resistance of the voice-coil	Ω		

9 Results	S24

Total Distortion Ratio		This window shows the total distortion ratio TDR of the acoustical output signal p_{far} versus measurement time t .		
	Symbol	Description	Unit	
	TDR	$TDR(t) = \frac{\max_{T_{\text{data}}} p_{\text{fardis}}(t) }{\max_{T_{\text{data}}} p_{\text{farJin}}(t) + p_{\text{fardis}}(t) } \cdot 100\%$	%	
SPL		This window shows sound pressure level of both total radiated signal p_{far} as well as the nonlinear distortion part $p_{\text{far,dis}}$ versus measurement time t .		
	Symbol	Description	Unit	
	Total SPL	SPL of the total radiated signal p _{far}	dB	
	Distortion SPL	SPL of the nonlinear distortion part $p_{far,dis}$	dB	
State variable	of one sta system ver <i>Note:</i> The di	This window shows the peak, bottom, maximum DC, DC as well as the RMS value of one state variable of the state vector z of the electro-mechanic-acoustical system versus measurement time <i>t</i> . **Note: The displayed state variable is depending on the input selection. The available state variables are depending on the simulated transducer and system.		
		The displayed curves follow the scheme:		
	Symbol	Description		
	Z peak	Peak value of the chosen state variable		
	Zbottom	Bottom value of the chosen state variable		
	Z max(DC)	Maximum DC value in the time interval of the chosen state variable		
	Z _{DC}	DC value of the chosen state variable		
	Z _{RMS}	RMS value of the chosen state variable		
State Distortion Ratio	the state v	The window shows the ratio of one nonlinear distortion state variable \mathbf{z}_{dis} and the state variable \mathbf{z} versus measurement time t . The shown state variable is depending on the input selection.		
	Symbol	Description	Unit	
	Distortion ratio of z	$DR_{z}(t) = \frac{\max_{T_{\text{data}}} \mathbf{z}_{\text{dis}}(t) }{\max_{T_{\text{data}}} \mathbf{z}_{\text{dis}}(t) + \mathbf{z}_{\text{dis}}(t) } \cdot 100\%$	%	
Crest Factor	chanic-aco	This window shows the crest factor of one state-variable of the electro-mechanic-acoustical system versus measurement time <i>t</i> . **Note: The displayed state variable is depending on the input selection. The available state variables are depending on the simulated transducer and system.		
	Symbol	Description	Unit	
	Crest Fac- tor of z	$d_{\text{crest}}(t) = \frac{\max_{T_{\text{data}}} \mathbf{z}(t) }{\mathbf{z}_{\text{RMS}} _{T_{\text{data}}}}$	-	

10 References

Patents	USA 8,964,996
Specs	H14 Klippel Dongle
Manual	<u>SIM-AUR</u>

Find explanations for symbols at:

http://www.klippel.de/know-how/literature.html

Last updated: April 23, 2024

