
Application note for the KLIPPEL ANALYZER SYSTEM (Document Revision 1.0)

DESCRIPTION

Accurate loudspeaker modeling in EASE requires precise measurement data. The KLIPPEL NFS Visualization operation seamlessly exports far-field balloon data, either as frequency responses (magnitude and phase) or as impulse responses, into external software such as EASE. Users can import high-resolution 3D directivity data measured with the Klippel Near Field Scanner System into EASE-SpeakerLab, where it is processed to generate an EASE GSS file, an essential step in creating an EASE GLL loudspeaker model.

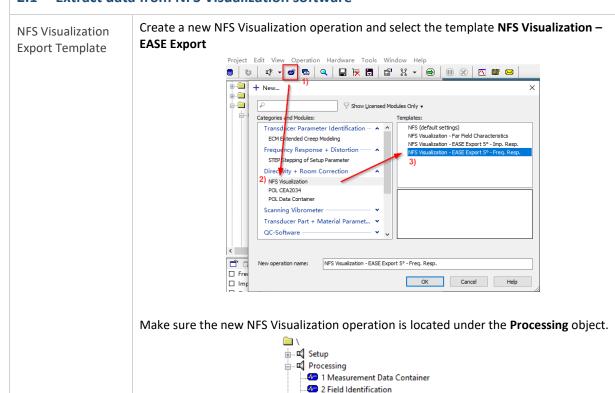
This guide outlines the step-by-step process of exporting balloon data from the NFS Visualization, including sensitivity and impedance, into EASE SpeakerLab for loudspeaker modeling and simulation.

CONTENT

1	Requirements	2
	Step by Step Guide	
3	References	8

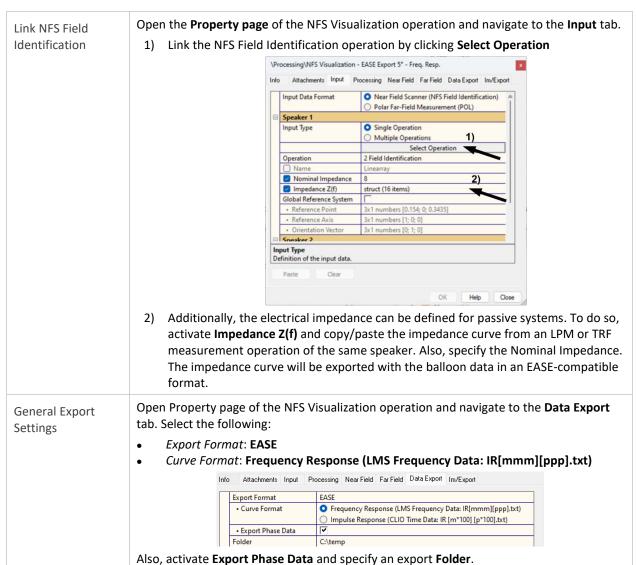
1 Requirements

1.1 Software					
dB-Lab 212.805 or higher	The frame software of the complete Klippel product line where you can configure and run measurements, analyze results, and organize your data.				
NFS Visualization	The NFS Visualization calculates the far field characteristics, near field visualization as well as data for further analysis with external software like MATLAB, EASE, etc. It is included in the NFS Basic Software Set.				
EASE SpeakerLab	Software for loudspeaker data analysis and GLL creation. Further information please refer to https://www.afmg.eu/en/ease-speakerlab .				
License	 NFS Visualization (included in NFS Basic Software Set) NFS Complex Data Export module Software license for EASE SpeakerLab 				


2 Step by Step Guide

The export interface in NFS Visualization extracts balloon data in standard data formats that are compatible with EASE-SpeakerLab. The user can define parameters like radius, angular range as well as angular resolution. The following ASCII formats are supported:

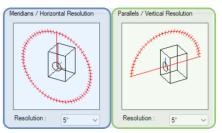
- Frequency Response LMS Frequency Data Format
- Impulse Response Clio Time Data Format


In the following guide, the frequency response export is illustrated as an example.

2.1 Extract data from NFS Visualization software

.47 3 Visualization

MFS Visualization - EASE Export 5° - Freq. Resp.


Coordinate Settings

The balloon data can be calculated at any distance r (Radius) and with user-defined angular settings by specifying the minimum, maximum, and resolution for both spherical angles phi and theta.

The angles theta and phi correspond to the following naming in EASE SpeakerLab:

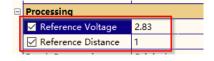
- Phi: Meridians / Horizontal Resolution
- Theta: Parallels / Vertical Resolution

Coordinates		
Radius	10	
Phi - Minimum	0	
Phi - Resolution	5	
Phi - Maximum	360	
Theta - Minimum	0	
Theta - Resolution	5	
Theta - Maximum	180	

Typically, a full balloon with 5° resolution has the following settings:

	Minimum	Resolution	Maximum	
Phi-Angle	0°	5°	360°	
Theta-Angle	0°	5°	180°	

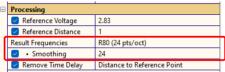
Note: When assuming symmetry of the device (e.g. horizontal, vertical, or quarter), the angular range can be adjusted to minimize the calculation and export time.

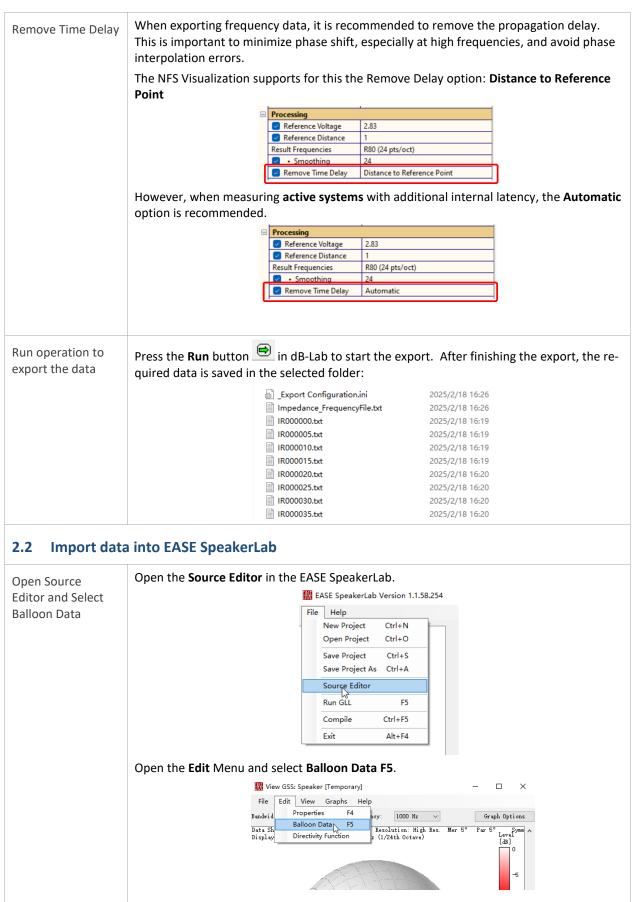

Recommended angle settings for Symmetry:

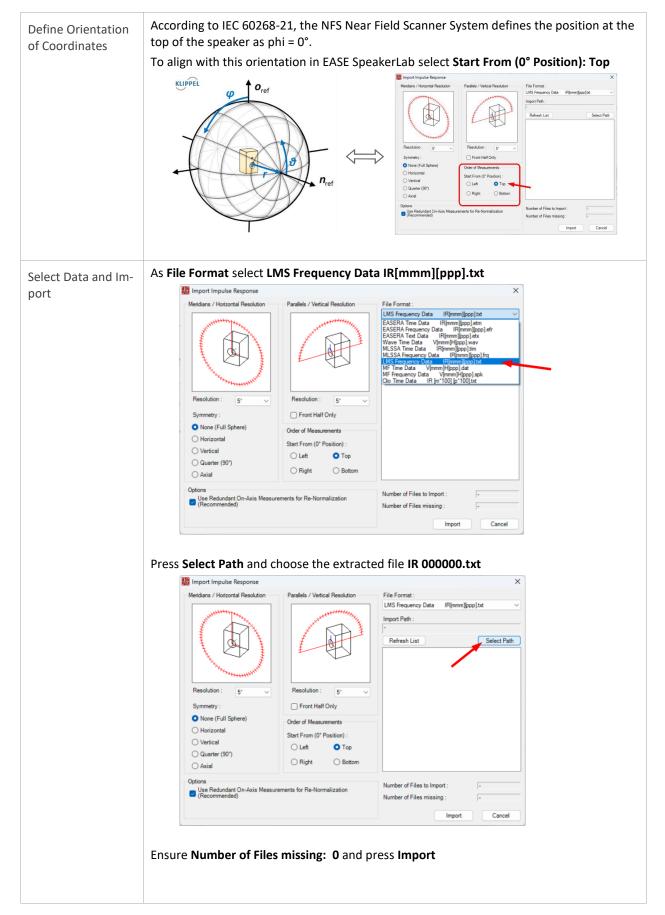
Symmetry (EASE)	Phi-A	ngle	Theta-Angle	
	Min.	Max.	Min.	Max.
Horizontal	0°	180°	0°	180°
Vertical	-90°	90°	0°	180°
Quarter (90°)	0°	90°	0°	180°
Axial	0°	0°	0°	180°

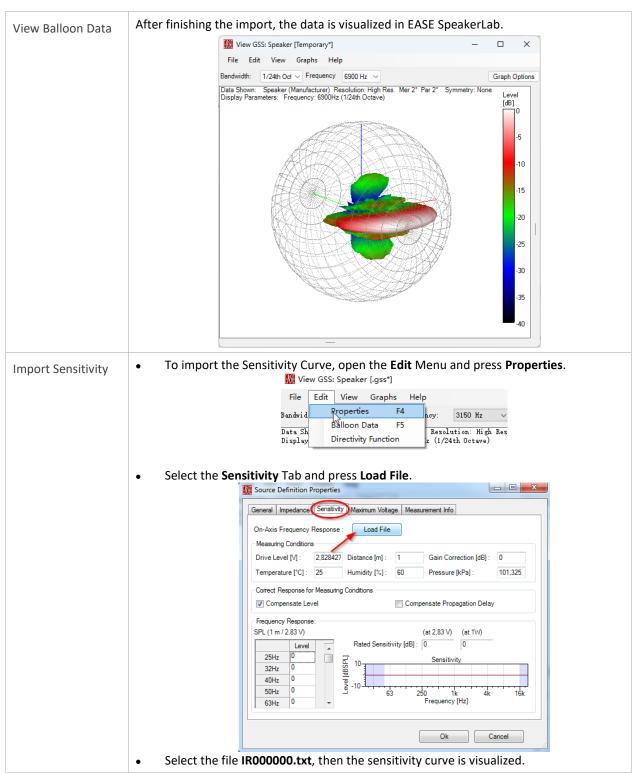
Sensitivity

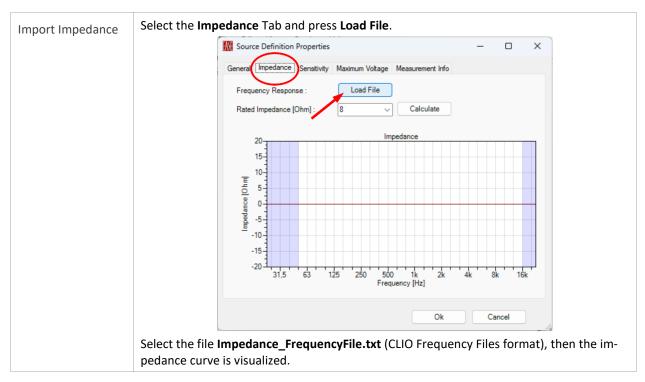
In order to specify the sensitivity curve of the loudspeaker in EASE-SpeakerLab, the exported frequency responses can be scaled to a certain input level using the parameters **Reference Voltage** and a certain distance using the parameter **Reference Distance**. The distance scaling applies the 1/r-law.


For example, set the distance to 1 m and the voltage of 2.83V for 1W at 8Ω .


Frequency Resolution and Smoothing


EASE recommends a minimum frequency resolution of 24 points per octave to ensure accurate sound field simulation results.


To meet this requirement, ensure that the resolution of the exported **Result Frequencies** is at least 24 points per octave (e.g. R80 ISO frequencies). Additional **Smoothing** can be applied, but the resolution should also be higher or equal to 24th of an octave.



 $\label{Note:During the export, the FREQUENCY} \textbf{ resolution is checked. If the resolution is insufficient, the NFS \mathbf{V} is ualization will display a warning.}$

3 References

Related Products	•	NFS – Near Field Scanner system EASE SpeakerLab
Related Documentation	•	Online manual for KLIPPEL NFS Specification C8 for KLIPPEL NFS

Find explanations for symbols at:

http://www.klippel.de/know-how/literature.html

Last updated: April 10, 2025

Designs and specifications are subject to change without notice due to modifications or improvements.

